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Abstract

[717] In this paper we combine the theory of probability aggregation
with results of machine learning theory concerning the optimality of
predictions under expert advice. In probability aggregation theory several
characterization results for linear aggregation exist. However, in linear
aggregation weights are not fixed, but free parameters. We show how
fixing such weights by success-based scores, a generalization of Brier
scoring, allows for transferring the mentioned optimality results to the
case of probability aggregation.
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1 Introduction

Probability aggregation is the theory of how to adequately aggregate several
probability distributions to a single one. It is an expansion of the theory of
judgment aggregation that combined problems studied by social choice theory
and logic as, e.g., problems of preference aggregation and questions of voting
theory.

In the past, research in judgment aggregation centred around the disci-
plines of economics and political science (Arrow 1963), law (Kornhauser and
Sager 1986), and philosophy (List and Pettit 2002). Recently, however, increas-
ing work in judgment aggregation stems also from computer science and re-
search on artificial intelligence (Grossi and Pigozzi 2014; Rossi, Venable, and
Walsh 2011). In particular there is an increase of interest in judgment aggre-
gation of researchers from artificial intelligence specifically in the domain of
knowledge representation and multi-agent systems. One important connec-
tion between judgment aggregation and artificial intelligence is seen in the fact
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that judgment aggregation has at its core the [718] task to resolve inconsisten-
cies that might show up once one aggregates individually consistent opinion
profiles to a single opinion profile. Since also a significant part of research in
artificial intelligence and logic is about resolving inconsistencies, as, e.g., in
nonmonotonic reasoning, belief revision, belief merging, paraconsistent logic,
inconsistency debugging, etc., it seems quite natural to assume that new tech-
niques studied in the theory of judgment aggregation might also be of some
use for artificial intelligence research. An overview of possible applications
and fruitful connections is provided, e.g., in (Dietrich et al. 2014).

Now, one fundamental problem of judgment aggregation consists in its the-
oretical underdetermination: Already in the 1980s several characterization re-
sults have been proven for families of probability aggregation rules (Genest
and Zidek 1986). However, these characterizations leave some parameters still
free and uninterpreted. In this paper we provide a new approach to fix these
parameters. Following suggestions of the literature on scoring rules for prob-
abilistic forecasts (Genest and McConway 1990, pp.57ff), we suggest to inter-
pret the weights in a success-based way. By cashing out results on no regret
algorithms for prediction under expert advice in another field of computer sci-
ence, namely online machine learning, we show that fixing the parameters in a
success-based way allows for optimal probability aggregation.

The structure of the paper is as follows: In the following section we briefly
present the basics of the framework of probability aggregation we are inter-
ested in. Afterwards we indicate the main result of research on prediction un-
der expert advice, i.e. meta-induction, employed by us. Then we implement
this result into the aggregation framework and show how it allows for optimal
probability aggregation. We conclude in the final section.

2 Linear Probability Aggregation

The theory of probability aggregation deals with the problem of how to aggre-
gate a set of probability distributions P1, . . . , Pn. For the probability distribu-
tions we assume that there is a finite real numbered measurable value space
{v1, . . . , vk}, that each Pi (1 ≤ i ≤ n) assigns to each vj (1 ≤ j ≤ k) a non-
negative value, and that these mappings sum up to one for all values, i.e.:

Pi(vj) ≥ 0 and
k

∑
j=1

Pi(vj) = 1

Abstractly speaking, the question of probability aggregation is how to charac-
terize a probability aggregation rule f which takes as input a set of n probabil-
ity distributions P1, . . . , Pn and generates as output a/the aggregated probabil-
ity distribution Paggr:

Paggr = f (P1, . . . , Pn)

Usually, several constraints are put forward for such an aggregation rule. Quite
common are the following three constraints:
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(U) Universal domain: f allows as input any P that satisfies the laws of proba-
bility theory

(Z) Zero Unanimity: f preserves unanimous zero-assignments: For all values
vj ∈ {v1, . . . , vk}: Paggr(vj) = f (P1, . . . , Pn)(vj) = 0, if P1(vj) = · · · =
Pn(vj) = 0

(I) Irrelevance of Alternatives: f aggregates value-wise: There is an f ∗ such
that for all values vj ∈ {v1, . . . , vk}: Paggr(vj) = f (P1, . . . , Pn)(vj) =
f ∗(P1(vj), . . . , Pn(vj))

These constraints on aggregation are typically justified as follows: (U) allows
for considering any individual probability distribution which is consistent. No
such probability [719] distribution should be excluded on a priori grounds. By
this, a wide range of possible inputs should be covered. (Z) is a very weak con-
straint for lifting unanimous considerations from the individual level to the
collective one: If all individuals within a setting agree on a probabilistic as-
sessment of 0 for an event, then also the aggregated outcome should agree on
this. Finally, (I) is often argued for by principles of informational parsimony
and avoiding “strategic voting” and manipulation: If one is interested in the
aggregated probability of a single value vj, then, if the aggregation method sat-
isfies the irrelevance of alternatives constraint, one can concentrate on grasping
individual Pi(vj) only, and one needs not to consider or collect probabilistic in-
formation about all the other values. Furthermore, if Paggr(vj) depends on the
individual probabilities of some other value vl : Pi(vl), then individuals might
have some incentive to dishonestly report their probability estimations in or-
der to favor one alternative over another—i.e. the input of aggregation is prone
to manipulation. So, all in all, these constraints seem to be justified once one is
interested in the aggregated probability distribution of a set of individual prob-
ability distributions.

Furthermore, since we aim at combining probability aggregation with a
particular scoring rule, it is also worth mentioning that some of these con-
straints for probability aggregation have formal pendants in the domain of
scoring rules. Universal domain (U) is also commonly assumed to hold for
scoring rules since such rules ought to operate on the whole interval of prob-
abilistic forecasts; and, more interestingly, irrelevance of alternatives (I) is the
formal pendant to the so-called locality-property of scoring functions where
the score for the value only depends on the probability of the value in question
(e.g., for trivial reasons are all binary scores local).

As is discussed and shown in (Genest and Zidek 1986; Lehrer and Wag-
ner 1981, chpt.6 theorem 6.4, resp. sect.3), these three conditions for probabil-
ity aggregation presented above characterize the family of linear probability
aggregation rules which have the form of a weighted arithmetic mean (given
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k ≥ 3):

Paggr =
n

∑
i=1

wi · Pi

(where wi ≥ 0 and w1 + · · ·+ wn = 1)

(LIN)

So, any aggregation method which satisfies constraints (U,Z,I) is a linear (LIN)
aggregation method, and every linear aggregation method satisfies these con-
straints. It is clear that according to this characterization result, different in-
terpretations of the weights allow for different specifications. In this sense,
probability aggregation is still underdetermined by the constraints (U,Z,I). In
this paper we aim at further determining (LIN) by putting forward constraints
on the weights. In particular, we argue for interpreting the weights in a regret-
based way, because such an interpretation allows for optimal probability ag-
gregation. In the next section we present such an optimality result.

Before we prepare the ground for our application, it should be noted that
the mentioned constraints which characterize linear weighted aggregation run
against other, also important constraints. So, e.g., independence preservation
(if all individuals consider vi and vj to be probabilistically independent, then
they should be also considered to be independent according to the aggregated
result—see, e.g., (Genest and Zidek 1986, condition 3.4 in sect.3)) or the so-
called notion of being externally Bayesian (which allows for some kind of com-
mutativity between aggregation and Bayesian learning—for details see, e.g.,
(Genest, McConway, and Schervish 1986)) cannot be reconcilled with linear
weighted aggregation. Rather, they are characteristic for another important
family of pooling methods, namely geometric pooling. Since here we focus
on linear aggregation based on generalized Brier scoring, we will not go into
further detail with respect to alternative constraints, and we leave it at this.
[720]

3 Optimality in an Expert Advice Setting

In online machine learning regret bounds of algorithms for making predictions
under expert advice in repeated prediction settings are studied (Cesa-Bianchi
and Lugosi 2006). The idea is to consider a series of events whose outcomes
have to be predicted by so-called experts or candidate methods. Given these pre-
dictions the task is to construct a prediction algorithm that uses the candidate
method’s forecast as input and aims at approaching the predictive success of
the best expert(s) in the setting, even if the best expert is changing in time in
irregular ways. Since a prediction method under expert advice combines the
expert’s predictions by inductively projecting the observed regrets to the fu-
ture, it is called a meta-inductive method (Schurz 2008). Regrets are relative to a
candidate method, and are defined as the difference between the cumulative loss
of the meta-inductive algorithm and that of the respective candidate method.
If it is positive, then the meta-inductive method has higher cumulative loss
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than the candidate method, and hence the meta-inductive method regrets in
hindsight to not have predicted in accordance with the candidate method. If
it is negative, then the meta-inductivist’s cumulative loss is lower than that of
the candidate method, and hence the meta-inductive method has not to regret
to have predicted not in accordance with the candidate method. Since usually
the loss at a prediction round is considered to be bounded by [0, 1], the score
of a prediction for a round is defined as 1 minus its loss. Hence, the cumula-
tive score up to prediction round t is t minus the cumulative loss. And hence
the regret of the meta-inductive prediction method with respect to a candi-
date method can be defined as the difference between the accumulated score
of the candidate method and that of the meta-inductivist. Positive regret means
that the candidate method has a higher cumulative score, and negative regret
means that the candidate method has a lower cumulative score. The idea of a
no regret algorithm or method is to have no (positive) regret in the long run, i.e.
that regret grows only sublinearly.

Here are the details: The settings of online learning are so-called prediction
games that have the following ingredients (Schurz 2008, notation adjusted):

• E is an infinite series of events consisting of variables E1, E2, . . . whose
outcomes val1(E), val2(E), . . . are elements of the normalized interval
[0, 1].

• P1,t, . . . , Pn,t are the predictions of Et (also elements of [0, 1]) of all n can-
didate methods.

• Pmi,t is the prediction of Et of the meta-inductive algorithm under inves-
tigation.

As we have indicated above, the meta-inductive algorithm “cooks up” a pre-
diction from the present predictions and past success rates of the candidate
methods. In order to keep track of the success rate of a method i one identifies
the score of i’s prediction about event Et with 1 minus the loss l of this predic-
tion and then sums up all of its scores up to round t and divides by t (Schurz
2008, sect.1):

si,t =

t
∑

u=1
1 − l(Pi,u, valu(E))

t
The measure si,t represents the average per-round success rate of candidate
method i up to round t. The only assumptions we make about the loss func-
tion l are (i) that it is within [0, 1], and (ii) that it is convex in its first argu-
ment, i.e. that the loss of a weighted average of two predictions is lower or
equal to the weighted average of the losses of these two predictions. Formally:
l(w · x + (1 − w) · y, z) ≤ w · l(x, z) + (1 − w) · l(y, z) holds for all x, y, z and
w ∈ [0, 1]. We put forward convexity as a desideratum for three reasons: first,
convexity is a general property satisfied by a wide range of loss functions that
are studied [721] in the area of probability aggregation; this desideratum is sat-
isfied in particular by one kind of loss function we are mainly interested here,
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namely the quadratic loss function; second, also online learning, the branch
to which we want to link our approach of probability aggregation, focuses on
convex loss functions (via convex optimization; cf. (Cesa-Bianchi and Lugosi
2006)). And third, there are also non-technical reasons for the adequacy of this
desideratum; so, e.g., if one shares the intuition that aggregating or “mixing”
or “blending” individual opinions to a collective one should be rewarded by
some kind of minimal benefit, then, e.g., only convexity serves a more funda-
mental constraint of providing a guarantee for avoiding strict sub-optimality
of the aggregated opinion.

Now, based on this measure for the success rate up to round t one can de-
fine a so-called attractivity measure which serves for defining the weights of
the meta-inductive prediction method. The idea of such a measure is that the
higher the past success of an attractive method, the higher is also its weight.
Moreover, the attractivity measure cuts off those candidate methods that are
not attractive, i.e., that have a lower average per-round success rate as the al-
gorithm. In linear weighting this is necessary in order for a meta-inductive
method to approach the best candidate methods in the setting. Figure 1 illus-
trates the idea behind cutting off.

t

valt(E), fi,t

3

5
f4

f2

f1

val(E)

fmi

t

valt(E), fi,t

3

5
f4

f2

f1

val(E)

fmi

Figure 1: Example of taking success rates as weights without cutting off outper-
formed predictions (left) and with cutting off outperformed predictions (right):
Ad left case: If the meta-inductive method ( fmi) just simply weights the predic-
tions according to their success rates, the influence of predictions which are
outperformed by it (here: f3, f4, f5) might never vanish. This prevents that the
meta-inductive method reaches the better, outperforming prediction methods
(here: f1, f2). Ad right case: If the meta-inductive method cuts off the out-
performed prediction methods, it reaches the better ones (first, by cutting off
outperformed f3, f4, f5, and then, by cutting off f2 which is outperformed in
the second round).

The weight of a candidate method Pi for the algorithm Pmi regarding event Et
is defined as follows (where smi,t is the success per round of the meta-inductive
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method up to round t):

wi,t =
max(0, si,t − smi,t)

n
∑

j=1
max(0, sj,t − smi,t)

Candidate methods that are performing worse than Pmi get weight 0. If Pmi
outperforms all candidate methods, then smi,t ≥ si,t for all i ∈ {1, . . . , n}, and
we stipulate wi,t = 1/n. So, the weights are always positive and sum up to 1;

Based on these weights, we can define a weighted-average meta-inductive
algorithm (MI) which weights the predictions of the candidate methods ac-
cording to their attractivities. [722] Such an algorithm generates predictions
by the method of linear (arithmetic) aggregation as follows (Cesa-Bianchi and
Lugosi 2006; Schurz 2008, sect.2.1, resp. sect.7):

Pmi,t+1 =
n

∑
i=1

wi,t · Pi,t+1 (MI)

In case there are no attractive methods, but also at the very beginning (E1) the
algorithm’s prediction consists of the mean of all predictions. Note that what
we called here attractivities corresponds to positive per-round regrets.

The algorithm (MI) proves to be very powerful regarding the task of ap-
proaching the best candidate methods’ per-round success rates: There are quite
narrow bounds of Pmi regarding the worst-case per-round regret, i.e., the dif-
ference of its success rate compared to the success rate of the actually best can-
didate method. The basic result of the machine learning literature we want
to employ in this paper is the following theorem on the upper bounds of the
regret (Cesa-Bianchi and Lugosi 2006; Schurz 2008, sect.2.1f, resp. sect.7):

Theorem 1. Given the underlying loss function l is convex it holds:

si,t − smi,t ≤
√

n/t ∀i ∈ {1, . . . , n}

This theorem shows that (MI) is a no regret algorithm in the sense that:

lim
t→∞

si,t − smi,t ≤ 0 ∀i ∈ {1, . . . , n}

So, the meta-inductive algorithm’s success rate and that of the best performing
candidate methods converge in the limit or the meta-inductivist even outper-
forms it. In this sense the meta-inductive algorithm is optimal. In the machine
learning literature settings that allow for such a result are also known as online
learnable (Shalev-Shwartz and Ben-David 2014).

The guaranteed performance of (MI) can be enhanced further by exponen-
tially weighting the absolute regrets such that the upper bound of the per-
round regret is

√
c · log(n)/t with c ≥ .5. Up to now the algorithm with the

best known general upper bound is such an algorithm using exponentially ab-
solute regret-weighting which guarantees such an upper bound with c = 3.125.
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To design an algorithm which has the minimal upper bound that is achievable
in principle, namely

√
log(n)/2t (Cesa-Bianchi and Lugosi 2006, p. 62, thrm.

3.7), is still an open task of online machine learning theory.
For our proposal the exact short-run bounds do not matter. What is rel-

evant is that they allow for no regret in the long run. I.e., any way of cook-
ing up success-based weights which allow for sublinear growth of regret (i.e.
guaranteed decreasing per-round regret) serve the purpose of theoretically jus-
tifying this choice. In the next section we are going to utilize this result of
meta-inductive optimality in order to fix the weights of linear probability ag-
gregation and provide a rationale for doing so.

4 Optimal Probability Aggregation

Note that up to now the predictions in the prediction game were only about
providing an estimate of one value within [0, 1]. In this sense the predictions
were not probabilistic, but deterministic. In the probabilistic case, each individ-
ual has to provide such an estimate for all possible values of {v1, . . . , vn} such
that the estimations turn out to satisfy the probability constraint (of summing
up to one). We can implement this by designing so-called probabilistic prediction
games. [723]

In probabilistic prediction games each forecaster or candidate method iden-
tifies the predicted real value with its credence of the predicted event condi-
tional on her information about the past. In the following part of this paper we
are implementing the optimality result of the foregoing section into the frame-
work of probability aggregation. In order to cash out the no regret optimality
result of meta-induction presented above for probability aggregation we have
to modify our framework a bit: It contains:

• Again, a series of events represented by random variables E1, E2, . . . , but
now the events do not have outcomes within [0, 1], but within a space
of discrete (non-numerical), mutually disjoint and exhaustive values vi,
{v1, . . . , vk}. In order to indicate which value a random variable took on
at a specific round, we assume a valuation function val to be given by:

valt(vm) =

{
1, if the value of Et is vm

0, otherwise

• Predictions are the credences of n candidate methods for each event vari-
able Et in the series, represented by probability distributions P1, . . . , Pn:

∀ t, i ∈ {1, . . . , n}
k

∑
m=1

Pi,t(vm) = 1 and Pi,t(vm) ≥ 0

So, for each event, at each round, the candidate methods provide a full
probability distribution about the outcome of the event in question.
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• The meta-inductive algorithm Pmi is also represented by a probability
distribution and defined as an arithmetically weighted average of the
P1, . . . , Pn; details are presented below.

The attempt to expand the framework of prediction games introduced in
the foregoing section to the probabilistic setting faces the problem that the
predictions are real numbers, i.e. probabilities, but the event’s values are not
numbers but non-numeric mutually exclusive and exhaustive values v1, . . . , vk.
However, as we will show now, there is a possibility of applying the meta-
inductive framework of prediction games to this case.

Since each of these values has two possible truth values, 0 and 1, we can
score probabilistic predictions by comparing them with these truth values for
each of the possible values. This means in effect that we mimic a prediction
game about a random variable with k values v1, . . . , vk by launching k predic-
tion games about k binary events, vm versus not-vm, in parallel.

We can define a measure for the predictive success regarding a value vm as
follows:

si,t(vm) =

t
∑

u=1
1 − l(Pi,u(vm), valu(vm))

t
It is reasonable, though not mandatory, to assume that l is the quadratic loss
function ((Pi,u(vm)− valu(vm))2), because according to a well-known result of
(Brier 1950) the quadratic loss function maximizes the forecaster’s expected
success if she identifies her predictions with her credences (in the literature
such scoring rules are also called proper scoring rules; a relevant alternative in
this respect is, e.g., the negative logarithmic scoring rule taking the negative of
the logarithm of the predicted value which proved to be true).

The decisive difference of this setting compared to the previous one is that
now the success rates of the candidate methods and the meta-inductive algo-
rithm are relative to [724] elements of the value space: Each method has a
success rate for each value vm. Based on this we can define a weight wi,t(vm)
of method i for predicting event value vm up to time t as follows (where saggr,t
is the per-round success rate of Paggr∗ as defined below):

wi,t(vm) =
max(0, si,t(vm)− saggr∗ ,t(vm))

n
∑

j=1
max(0, sj,t(vm)− saggr∗ ,t(vm))

Finally, based on these weights we might define a probabilistic aggregating
algorithm as follows:

Paggr∗ ,t+1(vm) =
n

∑
i=1

wi,t(vm) · Pi,t+1(vm)

It is easy to see that the no regret optimality result of the foregoing section holds
for such a meta-level method for each value vm of E’s value space: The prob-
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abilistic aggregating forecasting algorithm Paggr∗ will approximate the maxi-
mum of the success rates of the best candidate methods accessible in the set-
ting regarding each vm. However, there is a problem: It can easily happen that
the methods which are best at a given round depend on the value of the value
space. In other words, the meta-inductive forecaster uses weights resulting
from different prediction games which can lead to the result that its aggregated
probabilities are incoherent. To see this, consider the following example:

• Let E be a series of discrete random variables E1, E2, . . . .

• k = 3, i.e. the value space consists of v1, v2, v3.

• Let n = 2, i.e. the accessible candidate methods are P1 and P2. Now, let up
to round u candidate method P1 be a perfect expert in predicting v1 and
P2 be a perfect expert in predicting v2. Let up to round u P1 completely
fail regarding the predictions of v2, v3 and P2 completely fail regarding
predictions of v1, v3. Thus for all t ≤ u: if valt(v1) = 1, then P1,t(v1) = 1
and P2,t(v1) = 0; and if valt(v2) = 1, then P2,t(v2) = 1 and P1,t(v2) = 0.
Moreover if valt(v3) = 1 both fail, i.e. P1,t(v3) = P2,t(v3) = 0.

• So, the candidate predictions are such that their success rates at each
round t ≤ u (for all convex loss functions without an additive term) are:

s1,t(vi) s2,t(vi)
v1 100% 0%
v2 0% 100%
v3 0% 0%

• But then w1,u+1(v1) = 1, thus Paggr∗ ,u+1(v1) = P1,u+1(v1) and
w2,u+1(v2) = 1, thus Paggr∗ ,u+1(v2) = P2,u+1(v2). Now assume that at
round u + 1 both of the candidate methods predict the value they were
absolute experts up to round u, i.e. P1,u+1(v1) = 1 and P2,u+1(v2) = 1.
Then the predictions of the algorithm are

Paggr∗ ,u+1(v1) = 1 and Paggr∗ ,u+1(v2) = 1

which is probabilistically inconsistent.

So, although each individual provides a probabilistic forecast, pooling the fore-
casts according to this idea ends up with a forecast that is no longer probabilis-
tically consistent. Regarding each value of the value space such a forecast is no
regret optimal, however, this optimality comes at cost of consistency.

One can restore consistency by normalising Paggr∗ . Here the idea is to still
calculate for each candidate method success rates that depend on the method’s
success regarding a [725] specific value vm of the value space. These success
rates are then, in a second step, used for defining value-dependent weights for
each candidate method. And these weights are again, in a third step, used
to construct a prediction as above. However, additionally as a fourth step
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these predictions are normalized in order to guarantee probabilistic consis-
tency. Such a normalized average probability aggregation algorithm can be
defined as follows:

Paggr∗∗ ,t+1(vm) =
Paggr∗ ,t+1(vm)

k
∑

j=1
Paggr∗ ,t+1(vj)

A schema of such an implementation is illustrated in figure 2 (more details on
this figure see below): Probabilistic forecasts consist no longer of parallel pre-
diction games, but of combining parallel predictions by help of normalization
to a single probabilistic forecast.

v1 . . .

. . .

vkv2 vk−1

↓

t = 1

t = 2

t = 3

t = 4

Paggr∗︷ ︸︸ ︷
∑ r

Paggr∗∗︷ ︸︸ ︷
∑ r

Paggr︷ ︸︸ ︷
∑ r

Figure 2: Example of launching k prediction games about single events paral-
lel (Paggr∗ ), one for each value of the value space. Out of the parallel prediction
games a probabilistic forecast about all values is constructed by normaliza-
tion (Paggr∗∗ ); Paggr constructs its predictions out of averaging the success-rates
among the values. The bars under ∑ indicate the sum of the meta-inductive
algormithm’s probability forecast. The bars under r (regret) indicate proven
upper bounds for the regrets. As can be seen, Paggr∗ ’s regret vanishes in the
long run, hower its forecast is probabilistcally inhoherent (does not sum up
to 1). Paggr∗∗ is probabilistcally coherent through normalization, however, its
average per-round regret does not vanish in the long run. And finally, Paggr
(cf. the definition below) has advantages of both worlds: it is probabilistically
coherent and no regret optimal.

By help of an example one can show that the probabilistic aggregating fore-
casting algorithm is not optimal with respect to the single values. To see this,
consider the following probabilistic prediction game:

11



• [726] Let us assume that we have three values v1, v2, v3, two forecasters
P1, P2 and for simplicity reasons let us assume that each of them gives at
each round full probability to one of the values. Now, let us assume that
the forecasts and the outcome are as follows:

t 1 2 3 4
P1 v1 : 1.0 v1 : 1.0 v1 : 0.0 v1 : 0.0

v2 : 0.0 v2 : 0.0 v2 : 0.0 v2 : 0.0
v3 : 0.0 v3 : 0.0 v3 : 1.0 v3 : 1.0

P2 v1 : 0.0 v1 : 0.0 v1 : 0.0 v1 : 0.0
v2 : 1.0 v2 : 0.0 v2 : 1.0 v2 : 0.0
v3 : 0.0 v3 : 1.0 v3 : 0.0 v3 : 1.0

val v1 v1 v2 v3

t 5 6 7 8 . . .
P1 v1 : 1.0 v1 : 1.0 v1 : 0.0 v1 : 0.0 . . .

v2 : 0.0 v2 : 0.0 v2 : 0.0 v2 : 0.0 . . .
v3 : 0.0 v3 : 0.0 v3 : 1.0 v3 : 1.0 . . .

P2 v1 : 0.0 v1 : 0.0 v1 : 0.0 v1 : 0.0 . . .
v2 : 1.0 v2 : 0.0 v2 : 1.0 v2 : 0.0 . . .
v3 : 0.0 v3 : 1.0 v3 : 0.0 v3 : 1.0 . . .

val v2 v1 v2 v3 . . .

• Let us furthermore assume a linear loss function (similar counterexam-
ples are possible with other convex loss functions). Then the success
rates will converge to s1,t→∞(v1) = s2,t→∞(v2) = 7/8, s1,t→∞(v2) =
s2,t→∞(v1) = 5/8, s1,t→∞(v3) = s2,t→∞(v3) = 7/8. Thus, after some
point in time t∗, P1 will gain full attractivity and weight in predicting v1,
P2 full attractivity and weight in predicting v2, and both get equal weight
in predicting v3. Hence, starting at t∗ + 1 the unnormalized and the nor-
malized predictions of the meta-level agents are:

t t∗ t∗ + 1 t∗ + 2 t∗ + 3 . . .
Paggr∗ v1 : 1.0 v1 : 1.0 v1 : 0.0 v1 : 0.0 . . .

v2 : 1.0 v2 : 0.0 v2 : 1.0 v2 : 0.0 . . .
v3 : 0.0 v3 : 0.5 v3 : 0.5 v3 : 1.0 . . .

Paggr∗∗ v1 : 0.5 v1 : 0.66 v1 : 0.0 v1 : 0.0 . . .
v2 : 0.5 v2 : 0.0 v2 : 0.66 v2 : 0.0 . . .
v3 : 0.0 v3 : 0.33 v3 : 0.33 v3 : 1.0 . . .

val v1/v2 v1 v2 v3 . . .

• But then—given, e.g., the natural loss function—the success rates of
Paggr∗∗ ,t→∞ are: saggr∗∗ ,t→∞(v1) = 19/24 < 7/8 = s1,t→∞(v1),
saggr∗∗ ,t→∞(v2) = 19/24 < 7/8 = s2,t→∞(v2), and saggr∗∗ ,t→∞(v3) =
10/12 < 7/8 = s1,t→∞(v3) = s2,t→∞(v3).

• Hence, regarding all three values Paggr∗∗ is no regret suboptimal.
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As the examples above show, one cannot have both, consistency and op-
timality with respect to each value of the value space. However, we can con-
struct a probabilistic aggregation method, call it Paggr, that is both coherent and
no regret optimal. We can do so simply by averaging the success-rates for the
individual values of the value space.

To recognize this, we hint to the mathematical fact that if the loss function
l is convex with respect to all values of the value space, then also averaging
among the losses with respect to all values of the value space and with respect
to all points in time up to the round [727] of consideration is convex (for details
see the proof of theorem 2 in the appendix). Let us first define such an average
loss measure lav:

lav
i,t =

t
∑

u=1

k
∑

m=1
l(Pi,u(vm), valu(vm))

t · k
We can then define a measure for average success sav which is not rela-

tivized to a single value of the value space:

sav
i,t = 1 − lav

i,t

Based on these per-round average success rate we can define average success-
based weights wav that are also not relativized to a single value of the value
space. In order to avoid the need of cutting off as described in figure 1, we
will simply put the cumulative success together with a learning parameter η in
the exponent (for more details on η cf. the proof of theorem 2 in the appendix;
exponential weighting by help of a learning parameter is a general strategy to
avoid the need of cutting off (Cesa-Bianchi and Lugosi 2006, chpt.2)):

wav
i,t =

eη·sav
i,t ·t

n
∑

j=1
eη·sav

j,t ·t

Now, we can define the meta-inductive algorithm for weighted average prob-
ability aggregation (AGGR) based on these weights in accordance with (MI):

Paggr,t+1(vj) =
n

∑
i=1

wav
i,t · Pi,t+1(vj) ∀j ∈ {1, . . . , vk} (AGGR)

Since (AGGR) is an instance of (MI) and since l used to determine the weights
wav is convex, we can transfer the no regret optimality result of Pmi to Paggr:

Theorem 2. Given the loss function l is convex Praggr is a no regret algorithm for
aggregating probabilities:

lim
t→∞

sav
i,t − sav

aggr,t ≤ 0 ∀i ∈ {1, . . . , n}

(For a proof of theorem 2 see the appendix.)
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To illustrate this fact we can come back to the last example on the
suboptimality of Paggr∗∗ regarding each value of the value space: Here it was
the case that the candidate method P1 was better than Paggr∗∗ regarding v1
and v3, P2 was better than Paggr∗∗ regarding v2 and v3. However, as cal-
culating the average success-rates demonstrates as an instance of our gen-
eral result above, both of them are not better than Paggr in averaging over
their per-round success-rates regarding all values of the value space v1, v2, v3:
sav

aggr,t→∞ ≥ sav
1,t→∞ and sav

aggr,t→∞ ≥ sav
2,t→∞.

5 Meta-Induction Based on Generalized Brier Scor-
ing

In section 2 we have outlined that the general constraints of universality (U),
zero unanimity (Z), and irrelevance of alternatives (I) characterize linear probabil-
ity aggregation (LIN). In section 3 we referred to the fact that meta-inductive
predictions of single values (MI), i.e. deterministic predictions, are optimal in
the sense that they provide no regret predictions in [728] the long run. In sec-
tion 4 we have shown how the optimality of deterministic predictions can be
transferred to probabilistic predictions (AGGR). We have done so by defin-
ing a measure for the average loss and per-round success. Note that whereas
(LIN) was underdetermined regarding the choice of weights, (AGGR) is al-
ready much more determined in the sense that for satisfying the constraint of
long run optimality (i.e. having no regret in the long run) a certain kind of
success-based weighting is sufficient. In this section we want to briefly relate
our method of success-based probability aggregation to approaches that link
weights to scoring.

Scoring rules are intended to answer the question of measuring the accu-
racy of probabilistic predictions. Seminal regarding this task became (Brier
1950) where out of practical urgency of evaluating meteorological forecasts
a specific score was defined, the so-called Brier score. Glenn Brier suggested
to verify a forecasting method Pi via low scores calculated as (Brier 1950, p.1,
equ.2):

1
t

t

∑
u=1

k

∑
m=1

(Pi,u(vm)− valu(vm))
2

where valu(vm) = 1, if vm occurred at time u, and valu(vm) = 0, if vm did
not occur at time u. A perfect probabilistic predictor up to time t predicts all
event outcomes with probability 1 and all the other values with probability 0,
i.e. Pi,u(vm) = valu(vm) (for all u ≤ t, vm ∈ {v1, . . . , vk}), and hence has score
0. In the worst case a predictor predicts up to time t a value not showing up
with probability 1 and the true event outcome as well as all the other values
with probability 0. Then at each round it scores by 2/t (for the predicted value
1/t and for the prediction of the true outcome 1/t—for all the other predicted
values 0), hence its score up to round t is t · 2/t = 2, so the interval of the Brier
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score is [0, 2]. In order to normalize the Brier score, we need to divide it by 2.
So, the Brierian average loss of prediction method Pi up to round t is:

lBrier
i,t =

1
2t

t

∑
u=1

k

∑
m=1

(Pi,u(vm)− valu(vm))
2

Now, recall that we defined the average per-round loss of some prediction
method Pi up to round t which underlies the weights of (AGGR) as:

lav
i,t =

1
kt

t

∑
u=1

k

∑
m=1

l(Pi,u(vm), valu(vm))

Note that if we define l as a quadratic loss function with some factor, namely as
l(x, y) = k

2 · (x − y)2, then lav is identical to the normalized version of the Brier
score as defined in (Brier 1950): lav

i,t = lBrier
i,t . Since the quadratic loss function

is convex (and also the quadratic loss function with a constant factor), also the
no regret optimality result holds for linear aggregation where the weights are
determined via the normalized Brier score lBrier.

Meta-inductive probability aggregation allows to prove optimality for any
convex loss function. Since the normalized Brier score is a specific convex loss
function, we can [729] straightforwardly implement it to meta-inductive prob-
ability aggregation as defined in (AGGR). This allows for optimal probability
aggregation based on generalized Brier scoring.

6 Conclusion

In this paper we have argued for a new solution to the problem of weighted
probability aggregation. We have seen that some general constraints determine
families of aggregation rules like linear aggregation rules. In order to address
the problem of specifying such rules by fixing weights we have argued for a
success-based calculation of weights as is suggested also in the literature on
scoring probabilistic forecasts (Genest and McConway 1990, pp.57ff). As we
have shown, such an approach can be justified by help of results on predic-
tions under expert advice since a success-based calculation of weights allows
for no regret optimal probabilistic aggregation. This form of meta-inductive
probability aggregation can be considered as a generalization of approaching
probability aggregation by help of scoring.

Appendix

Here we provide a proof of theorem 2 which is a slight expansion of a proof
provided in (Feldbacher-Escamilla 2020), which itself is loosely based on a
proof provided in (Shalev-Shwartz and Ben-David 2014, p.253): The main strat-
egy of the proof is to apply inequalities such that the differences of the success
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rates are narrowly bounded. As we demonstrate now, success-based weight-
ing allows for an optimal bound in the sense that in the limit such weighting
cannot be outperformed by any other inference method in terms of the success
rate.

Proof. In order to prove the no regret-property of the aggregating method Paggr,
we characterise the difference between the competing predictors and that of the
aggregating predictor by help of a learning parameter η which is a function of
the number of rounds t, and which grows sublinearly with t. If such a char-
acterisation succeeds, then the difference of the success rate grows sublinearly
only and vanishes in the limit; this means that by help of such a characterisa-
tion the aggregating predictor is shown to be not outperformed by any other
predictor in the limit. As it turns out, one can characterise such differences in

successes by help of choosing η =
√

2·ln(n)
T . Here T is an arbitrary round and

sometimes also called the prediction horizon up to which a boundary is proven
(Cesa-Bianchi and Lugosi 2006, p.15). In order to generalise this boundary to
any round t, one needs, in a second step, to get rid of the exact choice of T by
employing the so-called doubling trick, according to which for each round t it
is assumed that the prediction horizon T doubles; this assumption increases
the bound a bit, but does not change anything regarding the limiting case, and
hence allows for proving a general optimality result too. In the following proof
we demonstrate the first part (for arbitrary T); the second part of applying the
doubling trick can be recapitulated by help of (Mohri, Rostamizadeh, and Tal-
walkar 2012, p.158).

i. Recall from section 3 and 4 that the probabilistic aggregation method we are
aiming at is defined as the weighted (wi,t) average of the individual predictions
(Pi,t), where the weights are a function of the per round successes si,t and the
latter are just defined as the “inverse” (within the unit interval) of the losses
l(Pi,t(v), valt(v)).

ii. Let η =
√

2·ln(n)
T . Furthermore let l be convex. Let us also restate the weights

wav
i,t recursively via defining coefficients c: Let ci,1 (for 1 ≤ i ≤ n) be 1. [730] Then

define recursively ci,t+1 = ci,t · e−η·∑k
m=1 lm

i,t/k, where lm
i,t = l(Pi,t(vm), val(vm)) is

the loss of i at round t with respect to the prediction of all value vm.
iii. By definition of c we get the following equalities about the ratio of the denomina-

tors used in normalisation of the weights (the normalising denominator for t + 1
and that of t):

n
∑

i=1
ci,t+1

n
∑

j=1
cj,t

=
n

∑
i=1

ci,t+1

n
∑

j=1
cj,t

=
n

∑
i=1

ci,t ·e
−η·

k
∑

m=1
lm
i,t/k

n
∑

j=1
cj,t

=
n

∑
i=1

wav
i,t · e

−η·
k
∑

m=1
lm
i,t/k

In what follows we abbreviate
k
∑

m=1
lm
i,t/k simply by Σli,t.
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iv. [731] By the inequality e−x ≤ 1 − x + x2

2 (valid for all x ≥ 0) we get the instance:

e−η·Σli,t ≤ 1 − η · Σli,t +
η2 ·

(
Σli,t

)2

2

Note that due to the assumptions in ii. 0 ≤ η < 1 and due to the boundedness of
loss l by [0, 1] η · Σli,t ∈ [0, 1].

v. By substituting the right term in the inequality of iv. for the e-term in iii. we get:

n
∑

i=1
ci,t+1

n
∑

j=1
cj,t

≤
n

∑
i=1

wav
i,t ·
(

1 − η · Σli,t +
η2 ·

(
Σli,t

)2

2

)

and by arithmetic transformation:

≤
n

∑
i=1

wav
i,t −

(
η ·

n

∑
i=1

(
wav

i,t · Σli,t
)
− η2

2
·

n

∑
i=1

(
wav

i,t ·
(
Σli,t

)2
))

By the normalisation of w:
n

∑
i=1

wav
i,t = 1, so:

≤ 1 −
(

η ·
n

∑
i=1

(
wav

i,t · Σli,t
)
− η2

2
·

n

∑
i=1

(
wav

i,t ·
(
Σli,t

)2
))

By taking the ln on both sides of the inequality:

ln


n
∑

i=1
ci,t+1

n
∑

j=1
cj,t

 ≤ ln

(
1 −

(
η ·

n

∑
i=1

(
wav

i,t · Σli,t
)
− η2

2
·

n

∑
i=1

(
wav

i,t ·
(
Σli,t

)2
)))

vi. By the inequality e−x ≥ 1 − x (valid for any x) we get ln(e−x) ≥ ln(1 − x) and
hence −x ≥ ln(1 − x). So, as an instance:

−
(

η ·
n

∑
i=1

(
wav

i,t · Σli,t
)
− η2

2
·

n

∑
i=1

(
wav

i,t · Σl2
i,t

))
≥

ln

(
1 −

(
η ·

n

∑
i=1

(
wav

i,t · Σli,t
)
− η2

2
·

n

∑
i=1

(
wav

i,t · Σl2
i,t

)))

Verify that due to the assumptions in ii. 0 ≤ η < 1, the boundedness of loss l by
[0, 1], as well as the normalisation of w our instance of x is within [0, 1].

vii. By substituting the left (upper) term in the inequality of vi. for the right term in
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the inequality in v. we get:

ln


n
∑

i=1
ci,t+1

n
∑

j=1
cj,t

 ≤ −
(

η ·
n

∑
i=1

(
wav

i,t · Σli,t
)
− η2

2
·

n

∑
i=1

(
wav

i,t ·
(
Σli,t

)2
))

and by arithmetic transformation:

≤ η2

2
·

n

∑
i=1

(
wav

i,t ·
(
Σli,t

)2
)

︸ ︷︷ ︸
≤1

−η ·
n

∑
i=1

(
wav

i,t · Σli,t
)

. . . due to
n

∑
i=1

wav
i,t = 1, and l ∈ [0, 1], so:

≤ η2

2
· 1 − η ·

n

∑
i=1

(
wav

i,t · Σli,t
)

viii. So, we arrived at the inequality (from vii.):

ln

(
n

∑
i=1

ci,t+1

)
− ln

(
n

∑
i=1

cj,t

)
≤ η2

2
− η ·

n

∑
i=1

(
wav

i,t · Σli,t
)

Now we can sum up each side of the inequality from 1 to T:

T

∑
t=1

ln

(
n

∑
i=1

ci,t+1

)
︸ ︷︷ ︸

=de f Ct+1

− ln

(
n

∑
i=1

cj,t

)
︸ ︷︷ ︸

=de f Ct


︸ ︷︷ ︸

= (CT+1−CT)+···+(C3−C2)+(C2−C1)
=CT+1−C1

≤
T

∑
t=1

(
η2

2
− η ·

n

∑
i=1

(
wav

i,t · Σli,t
))

︸ ︷︷ ︸
= T·η2

2 −η·
T
∑

t=1

n
∑

i=1
(wav

i,t ·Σli,t)

So, we arrive at:

ln

(
n

∑
i=1

ci,T+1

)
− ln

(
n

∑
i=1

ci,1

)
︸ ︷︷ ︸

=n

≤ T · η2

2
− η ·

T

∑
t=1

n

∑
i=1

(
wav

i,t · Σli,t
)

Hence:

ln

(
n

∑
i=1

ci,T+1

)
− ln(n) ≤ T · η2

2
− η ·

T

∑
t=1

n

∑
i=1

(
wav

i,t · Σli,t
)

[732] Recall, ci,t is the cumulative loss up to t in the exponent and we are after the
bound for the regret with respect to the best predictor, hence we concentrate on
the predictor with minimal cumulative loss up to T: Let us denote this predictor
with b (b = (ιi)(∑T

t=1 Σli,t = min(∑T
t=1 ∑ l1,t, . . . , ∑T

t=1 ∑ ln,t))). If there are more,
then we can randomly pick one. Now:

ln(cb,T) ≤ ln

(
n

∑
i=1

ci,T+1

)
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Hence:

ln(cb,T)− ln(n) ≤ T · η2

2
− η ·

T

∑
t=1

n

∑
i=1

(
wav

i,t · Σli,t
)

ix. By definition of c:

cb,T = cb,1 ·
T

∏
t=2

e−η·Σlb,t

︸ ︷︷ ︸
=e−η·(Σlb,1+Σlb,2+···+Σlb,T )

=exp

(
−η·

T
∑

t=1
Σlb,t

)

So:

ln(cb,T) = ln

e
−η·

T
∑

t=1
Σlb,t

 = −η ·
T

∑
t=1

Σlb,t

By substituting the right term in the last inequality in viii. we get:

−η ·
T

∑
t=1

Σlb,t − ln(n) ≤ T · η2

2
− η ·

T

∑
t=1

n

∑
i=1

(
wav

i,t · Σli,t
)

And by arithmetical transformation:

T

∑
t=1

n

∑
i=1

(
wav

i,t · Σli,t
)
−

T

∑
t=1

Σlb,t ≤ T · η

2
+

ln(n)
η

If we substitute for η in accordance with ii: η =
√

2·ln(n)
T , we get:

T

∑
t=1

n

∑
i=1

(
wav

i,t · Σli,t
)

−
T

∑
t=1

Σlb,t ≤
√

2 · ln(n) · T

Now, what is left is to employ the left term of the difference in the inequality
above for proving a bound for the meta-inductive method’s regret.

x. According to AGGR, Paggr predicts as follows: Paggr,t(vm) =
n
∑

i=1
wav

i,t · Pi,t(vm).

Hence its loss for value m is: l
(

n
∑

i=1
(wav

i,t · Pi,t(vm)), valt(vm)

)
. And hence its av-

erage cumulative loss is:

T

∑
t=1

k

∑
m=1

l

(
n

∑
i=1

(wav
i,t · Pi,t(vm)), valt(vm)

)
/k

[733] Since l is convex (according to ii.), we get:

k

∑
m=1

l

(
n

∑
i=1

(wav
i,t · Pi,t(vm)), valt(vm)

)
/k ≤

k

∑
m=1

n

∑
i=1

(
wav

i,t · l(Pi,t(vm), valt(vm))
)

/k

(I.e.: The loss of a weighted average of predictions is smaller than or equal to the
weighted average of the losses of the predictions.) Hence, from the last inequality
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in ix. and the convexity of l we get:

T

∑
t=1

k

∑
m=1

(
l

(
n

∑
i=1

(wav
i,t · Pi,t(vm)), valt(vm)

))
/k −

T

∑
t=1

k

∑
m=1

l(Pb,t(vm), valt(vm))/k︸ ︷︷ ︸
=lav

aggr,T ·T−lav
b,T ·T

≤
√

2 · ln(n) · T

xi. Now, since sav
i,T = 1 − lav

i,T , this means that:

sav
b,T − sav

aggr,T ≤ const√
T

By applying the above mentioned doubling trick, this holds for all T, hence:

lim
t→∞

sav
b,t − sav

aggr,t ≤ 0

Since Pb was the method with least cumulative loss up to t (we defined b this
way in viii.), this bound holds also with respect to all other predictors (for all
1 ≤ i ≤ n).

[734]
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